skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alstad, Zachary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. [NAME] is an initiative aimed at supporting students with executive function (EF) disabilities through the use of augmented reality (AR). The use of a co-design process is central to its development, which involves collaborating with neurodiverse co-designers to ensure the tool meets the unique needs of this population (Spiel at al., 2022). By working closely with students from [NAME], design and development of this technology was consistently informed by the needs of the neurodiversity community. The co-design approach emphasized inclusivity and active participation, involving open dialogue, feedback sessions, and iterative design cycles. This process allowed the project team to refine the tool based on real-world usage and feedback. One of the main goals of [NAME] is to create an engaging and supportive user experience. By understanding the specific challenges faced by students with EF differences, such as ADHD, the team developed features that addressed these challenges directly. The AR interface was designed to be intuitive and interactive, helping students stay focused on their STEM related tasks. The tool uses machine learning algorithms to monitor students' attention and distractibility, providing feedback and adjusting prompts as needed. This adaptive feature is important for creating a supportive learning environment that evolves with the student’s progress (Ahmad, 2015). Personalized prompts and reminders will then be tailored to each student’s needs, providing timely support to help them stay on track. The co-design process empowers neurodiverse students by giving them a voice in the development of the tools they will use. By incorporating their feedback and insights, [NAME] ensures that the final product is both practical and empowering. This approach enhances the tool's effectiveness and fosters a sense of ownership and confidence among the students. The innovative co-design methodology used in [NAME] sets a precedent for future educational technologies. By demonstrating the value of inclusive design and the potential of AR in education, the project paves the way for more accessible and effective learning tools. The ultimate vision is for [NAME] is to serve as a model for scalable interventions that support a wide range of learners in both academic and workplace settings. The co-design features of [NAME] highlight the importance of collaboration, personalization, and adaptability in creating educational tools that meet the needs of neurodiverse students (Armstrong, 2012). By leveraging AR and involving the end-users in the design process, [NAME] aims to improve how students with EF disabilities engage with STEM learning. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026
  2. Free, publicly-accessible full text available June 10, 2026
  3. Abstract Ambient environmental stimuli may impact how a student is or is not able to apply themselves in cognitive and educational tasks. For neurodivergent learners, these barriers can be compounded as they may be more likely to attend to task-irrelevant ambient noise. The affordances of new systems, such as virtual reality (VR), could be useful for allowing neurodivergent students more deliberate control over what information they experience and what information they do not. This study seeks to explore the dynamics of attention in VR environments. To address this, participants were asked to perform a number of visual search tasks in VR to assess the impact of both visual and auditory distractions on speed and accuracy markers. Results indicate a differential impact of background noise on the performance of neurotypical and neurodivergent participants. Potential benefits to neurodiverse populations and design recommendations in this emerging space are discussed. 
    more » « less
  4. This paper reports on a fully inclusive co-design process of an informal VR science game intended to be accessible to a broad range of learners. The co-design embraces the `nothing about us without' us movement by ensuring that stakeholder voices have a prominent role throughout the design process. In the project described in this paper, professional designers and researchers work with a team of neurodiverse stakeholders as peer members of the design team. The design process is described, and the findings based on feedback from all co-design participants is reported. Recommendations for others in the field are provided to help guide those interested in implementing an effective and inclusive co-design process. 
    more » « less